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1 Introduction

Frequencies assigned for use by wireless microphones are in the VHF and UHF bands. With the recent
clearance of the UHF 800 MHz band to broadband mobile, and the potential clearance of the 700 MHz
band, wireless microphones are losing the available spectrum [I]. And the remaining spectrum will no
longer be able to satisfactorily accommodate the increasing demand for frequencies. Therefore, there is a
need to ensure the continuation of wireless microphone services in higher frequency bands as well (such
as the 1492 — 1518 MHz band, which is currently being implemented by CEPT working group FM or
even higher frequency bands).

1.1 Objectives of the Project

The goal of the study is to quantify the degradation in the wireless microphone transmission performances
at higher frequencies as compared to the performances in the UHF band with particular reference to
how the radiation pattern of wireless microphones (in the presence of a human body) changes as the
transmission frequency increases.

1.2 Scope of the Work

The study has investigated the effect of the antenna placement and its distance from the body on its
radiation pattern and consequently, on the link budget loss (body loss) for different frequencies, starting
with the VHF band and going up to 6 GHz. This was done using full-wave electromagnetic simulations of
three numerical human-body models (obese, average male adult and child), see Figure[I} with a handheld
or a body-pack wireless microphone transmitter. As proposed extraction frequencies, 3 frequencies per
octave: 235, 300, 375, 470, 595, 750, 945, 1190, 1500, 1890, 2380, 3000, 3780, 4760 and 6000 MHz with
specific extractions at 825, 1400 and 1700 MHz.

1.3 Project Plan and Work Packages
1.3.1 Simulation Scenarios

There were two major scenarios studied in this project:

Scenario 1: Handheld Wireless Microphone (see Appendix
In this scenario, the human model is posed into a representative posture so as to hold the microphone
in one hand close to its mouth and with an inclination angle of 45 degrees.

Scenario 2:  Body-Pack Wireless Microphone (see Appendix
In this scenario, we will concentrate on the case where a microphone is connected via cable to the
bodypack transmitter that is:

e Attached to the belt on the human model’s front side

e Attached to the belt on the human model’s back side

2 Methods

Simulations using SEMCAD X FDTD EM solver of lossless antennas in typical wireless microphone
packages either in free space or in conjunction with a human model were performed. For the purpose of
simulation the frequencies were split into 4 different bands, 235 — 825 MHz, 945 — 1890 MHz, 2380 — 3780
MHz and 4760 — 6000 MHz.
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2.1 Models
2.1.1 Human Models

Three models were chosen to represent users with different body mass indices, or in other words, small
to large users, namely spanning users of 30 to 120 kg weight and 1.35 to 1.78 m tall as a reasonable proxy
for the entire user population. The models used in the study can be seen in Figure [I]

Fats Duke Eartha
120 kg 70 kg 30 kg
1.78 m 1.74m 1.35m

Figure 1: Human Models.

The human models are based on high resolution magnetic resonance images of healthy volunteers. More
than 80 different tissues were distinguished during the segmentation of the models [2]. For the simulations,
the tissues are assigned with the corresponding dielectric properties, as defined in the database available
online [3].

2.1.2 Handheld Microphone Model

The antenna selected for the handheld microphone setup was a short monopole (length < A/4). Given
this constrain, the lengths of the monopole for the different frequency bands were chosen as:

e Band 1 (235 — 825 MHz): 40 mm

e Band 2 (945 — 1890 MHz): 40 mm
e Band 3 (2380 — 3780 MHz): 16 mm
e Band 4 (4760 — 6000 MHz): 10 mm
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The handheld microphone structure combined with the monopole corresponding to each band are
depicted in Figure 2] The length of the device is 253 mm, and the diameter of the microphone body
is 3bmm. The diameters of the head and cap vary from the microphone body as indicated in Figure
The parts of the microphone marked as A and B in Figure [2| were simulated as Perfect Electrical
Conductor (PEC), whereas the dielectric cap marked as C was simulated as lossless dielectric with
relative permittivity €, = 3.

| |
C

Band1 Band3 Band4
Band 2

Figure 2: Handheld microphone model.

2.1.3 Bodypack Microphone Model

The antennas in the Bodypack Microphones were simulated as short monopoles, whose lengths were
selected according to the frequency band as in the handheld microphone case, see Section [2.1.2] The
bodypack microphone system has been modeled as a bodypack, a cable and a small lavalier microphone.
The bodypack is a metallic rectangular box, coated with 2mm thick insulation layer. The cable is
grounded to the bodypack metal as shown in Figure [3| and was routed from the bodypack up to the
upper torso of the models, keeping 5 mm distance from the body surface along most of the cable length.
For model simplicity, the cable has been modeled using a thin wire approximation, and no insulation
is covering the metal lead. This approximation reduces considerably the simulation size and run time.
The materials used in the simulations were PEC for the monopole, enclosure and microphone lead, and
lossless dielectric for the coating of the bodypack (e, = 3).

2.2 Postures

For the case where the microphone is handheld, an angle of 45° with respect to the axes was chosen as
being a representative posture and the human model posed to give a natural arm position, see Figure [
For the case where a bodypack was used, a typical 1.2m long lavalier microphone was used and routed
close to the body from the lapel as shown in Figure [5

2.3 Extracted Parameters

The 3D radiation patterns have been extracted with a resolution of 1 degree. The files containing these
data form part of the deliverables of the project, and have been sent to BAKOM. In this report, however,
some plots of the 3D radiation patterns are shown for illustration, at a lower resolution. The 2D radiation
patterns for the three planes XY, YZ and XZ were extracted. Due to the large amount of data, a selection
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Band 1 & 2 Band 3 Band 4

Figure 3: Bodypack microphone model.

Figure 4: Postures for handheld microphone simulations.

of the 2D radiation pattern plots is included in the main body of the report in Section [3] For the sake of
completeness, all the 2D radiation pattern plots (three planes, three human models, and all frequencies)
are documented in Appendix [A] for the handheld microphone and in Appendix [B] for the bodypack
microphone.

Another important aspect that has been investigated in the course of the project is the ratio of the
absorbed power in the body versus the radiated power as a function of frequency. At the same time,
Specific Absorption Rate (SAR) extractions have been performed, which illustrate power absorption
mechanisms.

The results will be shown in reference to the free space case, where the pattern is not affected by
the body, and also will be discussed with reference to performance in the bands currently allocated for
professional wireless microphones.

All results shown in this report are referenced to 1 W delivered power to the antenna, disregarding
mismatch at the feed point. This assumption also implies that the same power is delivered to the
antenna in any loading conditions, be the antenna in free space or in the presence of the body. The
detuning of the antennas due to the presence of the body has not been studied.
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(b) Duke back position

(d) Eartha back position

Figure 5: Lavalier microphone and bodypack positioning.
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3 Results

3.1 Handheld Microphones

The handheld microphone was modeled by a conductive tube with a dielectric cover at the bottom
containing a monopole fed against the tube as a counterpoise. Figure [6] shows the free space patterns for
the microphone monopole combination over the full frequency range of the study.

BAND 1

BAND2 -}

235 MHz 825 MHz

2380 MHz 3780 MHz 4760 MHz 6000 MHz

Figure 6: Free space handheld microphone radiation patterns. Scale referenced to peak gain.

The radiation pattern becomes increasingly complex when the microphone body is used as the coun-
terpoise for a monopole element. Effective length for a 40 mm monopole including microphone would
be ~ 266 mm, Figure [7] which is a half wave at ~ 565 MHz. Above this frequency it will be expected
that additional side lobes are introduced, even though the monopole is at, or below, resonance. The
simulations clearly show the effect, Figure[6] with the first side lobes becoming evident above at 750 MHz
and significant by 825 MHz and increasingly complex at higher frequencies. The radiation patterns when
the microphone is held by the hand will be dampened with respect to the microphone in free space.

Unit: mm
Figure 7: Effective length of the monopole in the handheld microphone.

Figure [§ to Figure [I5] show the radiation patterns and how they change between 235 MHz and 6 GHz.
At the lowest frequencies the body and hand/arm do not shadow the radiation pattern. In fact, the
interaction acts to modify the radiation pattern and remove some of the nulls that are seen in the free
space case. This is due to the hand acting as part of the antenna counterpoise. The loss in the hand also
reduces the gain seen but not dramatically. By 845 MHz, Figure[d] the hand continues to act to damp the
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nulls, but we see that there is the introduction of some additional nulls in the radiation pattern. It is not
completely clear if the origin is due to shadowing or the distribution of RF currents on the microphone
and arm.

XY plane YZ plane XZ plane
1050 90° 75 1050 90° 750 105> 90° 750

— Fats = Eartha
= Duke = Monopole

= Fats = Eartha = Fats = Eartha
= Duke = Monopole = Duke = Monopole

Figure 8: Radiation patterns for the microphone held by the 3 human models and the free space case at
235 MHz.

XY plane YZ plane XZ plane
1050 90° 75 1050 90° 75 10s°  90° 75

= Fats = Eartha = Fats = Eartha = Fats = Eartha
= Duke = Monopole = Duke = Monopole = Duke = Monopole

Figure 9: Radiation patterns for the microphone held by the 3 human models and the free space case at
845 MHz.
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XY plane YZ plane XZ plane
1050 90° 75 1050 99° 75 1050 99° 75

Z90° ~T5° ——
— Fats — Eartha — Fats — Eartha — Fats - Eartha
== Duke == Monopole == Duke == Monopole == Duke == Monopole

Figure 10: Radiation patterns for the microphone held by the 3 human models and the free space case
at 945 MHz.

XY plane YZ plane XZ plane
1050 9" 750 1050 9 750 1050 9 750

-105° —90° -75° -105° —90° -75° -105° —90° -75°
— Fats — Eartha ‘ — Fats — Eartha — Fats — Eartha ‘
= Duke == Monopole = Duke == Monopole = Duke == Monopole

Figure 11: Radiation patterns for the microphone held by the 3 human models and the free space case
at 1890 MHz.
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XY plane YZ plane XZ plane
1050 90° 75 1050 99° 75 1050 99° 75

-90°

— Fats — Eartha — Fats — Eartha — Fats — Eartha
== Duke == Monopole == Duke == Monopole == Duke == Monopole

Figure 12: Radiation patterns for the microphone held by the 3 human models and the free space case
at 2380 MHz.

XY plane YZ plane XZ plane
o o 0°

1050 9" 750 1050 9" 750 105° 75°

-105° —90° -75° -105° —90° -75° -105° —90° =75°
— Fats = Eartha ‘ — Fats = Eartha — Fats = Eartha
= Duke == Monopole = Duke == Monopole = Duke == Monopole

Figure 13: Radiation patterns for the microphone held by the 3 human models and the free space case
at 3780 MHz.
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XY plane YZ plane XZ plane
1050 90° 75 1050 99° 75 1050 99° 75

-90° ° —90°

— Fats — Eartha — Fats — Eartha — Fats - Eartha
== Duke == Monopole == Duke == Monopole == Duke == Monopole

Figure 14: Radiation patterns for the microphone held by the 3 human models and the free space case
at 4760 MHz.

XY plane YZ plane XZ plane
1050 9" 750 1050 9 750 1050 9 750

-90° : ° Toor -T5°
— Fats = Eartha — Fats = Eartha — Fats = Eartha
= Duke == Monopole = Duke == Monopole = Duke == Monopole

Figure 15: Radiation patterns for the microphone held by the 3 human models and the free space case
at 6000 MHz.
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The nulls are no deeper than those in the free space case. At 945 and 1890 MHz, Figure [10] and Figure
[[1} we see a similar pattern to the lower frequencies some gain reduction due to losses in the hand,
variations in the radiation patterns with changes in the direction of the nulls, but at 1890 MHz we see
the first clear indication of a shadow in the direction of the head and body, which increases in depth
as the person gets larger (Figure left plot). As the frequency increases up to the highest frequency
of 6 GHz the plots are similar. The horizontal and vertical plots, left and middle plots respectively in
Figure [I2) to Figure the shadowing of the body is evident, the trend is to slightly more shadowing at
higher frequencies but this is not a strong trend. The number of ripples in the patterns increase, as the
frequency increases, due to the scattering and multipath mechanisms, the nulls in the patterns are not
so related to those of the free space microphone but more directly to the shadowing of the body.

At the lowest frequencies there is a reduction of gain in all directions, whereas at the higher frequencies
the gain reduction is only in the directions shadowed by the body. The reason for this can be seen from
the power balance, Figure [I6] as there is much more loss in the body at low frequencies. The principle
reason is that the antenna is then electrically small and the hand and arm play an important role in
extending the effective counterpoise of the antenna: The RF current flows along the arm, and the arm
being lossy then absorbs a significant amount of power. This mechanism becomes less and less important
as the frequency increases and the antenna is no longer electrically small. The specific absorption rate
(SAR) at the surface of the body, seen in Figure|17]to Figure |19 for the three body models as a function
of frequency, confirms the frequency dependent power balance (more absorption at low frequencies).
Also, the SAR in a central slice of the body (plane yz, for x = 0) was extracted for the Duke model at
frequencies 825 MHz, 3000 MHz, and 4760 MHz, and it is depicted in Figure The penetration depth
is clearly higher at low frequencies and thus the power absorption in the body decays as frequency grows.
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Figure 16: Radiated versus loss power (in %) as a function of frequency, for 1 W input power.
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IZ f=825MHz IZ f=3000 MHz IZ f=4760 MHz

Figure 17: Surface SAR for Fats with the handheld microphone (0 dB = 1 W/kg).

I,; f=825MHz IZ f=3000 MHz IZ f=4760 MHz

Figure 18: Surface SAR for Duke with the handheld microphone (0 dB = 1 W/kg).

I‘; f =825 MHz I‘;

Figure 19: Surface SAR for Eartha with the handheld microphone (0 dB = 1 W/kg).

f = 3000 MHz I‘; f=4760 MHz
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8 325 MHz [l B 3000 MH: [l Bl 4760 MHz

Figure 20: SAR distribution in a profile view of the the Duke model (central slice), showing the absorption
in the frontal part of the body due to the antenna radiation at 3 different frequencies. In the scale 0 dB
are equivalent to 1 W/kg for 1 W input power.
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One question that arises is does the pattern complexity of the free space microphone have significant
influence on the results with the body present? Figure [2I] shows the simple monopole fed against the
microphone body. Figure shows a different configuration with a short dipole, reducing complexity,
though reflections from the microphone body still add some ripples. Comparing Figure 23| to Figure
we can see that there are some small differences, but the majority of effects are related to the presence
of the human body and not to the complexity of the free space pattern when the hand is not present,
which confirms the original assumption.

Figure 21: Monopole antenna at 6000 MHz.

Figure 22: Dipole inside the radome not fed against the microphone body, at 6000 MHz.

Only a subset of the results have been shown here that are sufficient to illustrate the points for
discussion. The complete set of simulation results for all frequencies can be found in Appendix [A]
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XY plane YZ plane XZ plane
1050 99" 75 1050 99" 750 1050 99" 750

-105° —90° -75° -105° —90° -75° -105° —90° -75°
—— Duke —— Dipole —— Duke = Dipole —— Duke = Dipole

Figure 23: Radiation patterns at 6000 MHz for Duke with handheld microphone with reduced complexity
in the reference pattern (as shown in Figure .
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3.2 Bodypack Microphones

The bodypack with a lavalier microphone was modeled by a conductive case with a dielectric coating to
prevent conductive contact to the body and a monopole on the top fed against the case as a counterpoise.
The lavalier was modeled as a conductor 1.2m long with the shield connected to the case ”ground”.
Figure 23 shows the free space radiation patterns of the bodypack with microphone.

At the lowest frequency the microphone lead plays a dominant role in the radiation mechanism as can
be seen by the dipole pattern aligned with the lead. As the frequency increases the pattern rotates to
be aligned with the monopole - case axis showing that the extension provided by the lead becomes less
important. As the frequency increases further the radiation pattern becomes increasingly complex when
the microphone case is used as the counterpoise for a monopole element. The complexity is related to
the effective length. For a 40 mm monopole including bodypack overall length is ~152 mm, Figure [24]
which is a half wave at ~985 MHz. Therefore, above this frequency it will be expected that additional
side lobes are introduced even though the monopole is at, or below, resonance.

Unit: mm

Figure 24: Bodypack model.

Figure to Figure show the radiation patterns and how they change from 235 MHz and 6 GHz
when the microphone is at the lapel and bodypack on the belt at the back.

XY plane YZ plane XZ plane
90° 90° 90°

105° 75° 105° 75° 105° 75°

— Fats — Eartha = = = Ref. wiow
= Duke = Ref. w/w

— Fats — Eartha = = = Ref. wlow
= Duke = Ref.w/w

— Fats — Eartha = = = Ref. wiow
= Duke = Ref.w/w

Figure 25: Radiation patterns for the bodypack on the 3 human models and the free space case at
235 MHz.

At the lowest frequency illustrated, Figure [25] the shadowing of the body is not evident however there
is a very significant reduction in the gain compared to the free space case in all directions. Both these
phenomena are related to each other, we already noted that the microphone lead forms a significant part
of the radiating structure and as this goes round to the front of the body radiating along its length there
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XY plane YZ plane XZ plane
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Figure 26: Radiation patterns for the bodypack on the 3 human models and the free space case at
845 MHz.
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Figure 27: Radiation patterns for the bodypack on the 3 human models and the free space case at
945 MHz.

is no shadow, but the close proximity of the lead to the body gives rise to enhanced interaction and hence
loss producing regions of high SAR in the body. As the frequency increases the role of the microphone
lead becomes less important and the shadowing of the body increases as there is no radiation to the front
from the lead and the gain increases in those directions not shadowed by the body showing that the
overall loss in the torso also decreases. The level of shadowing by the body, shown in the left and centre
plots, increases with approximately the log of the frequency and the size of the user.

A comparison was then performed between the pack on the back and a front position at the location
of one pocket, Figures and to see if there were any significant differences. Figure [33|to Figure
show the comparison of the front and back positions for the median sized adult model Duke.

Firstly, it can be noted that the low frequency performance is poorer due to the fact that pack and lead
are now located on the same side of the body: Loss and shadowing are greater at 235 MHz. At 945 MHz
we also observe that the radiation from lead and antenna can cause cancellation in some directions with
deep nulls possible, but these are hard to predict as they are a function of device and lead positioning.
This behavior is not so evident for the rear position, as the lead tends to be routed round orthogonal
to the monopole element. At higher frequencies there is little or no difference in performance, just the
direction of the shadowing changes, as would be expected.
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XY plane YZ plane XZ plane
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Figure 28: Radiation patterns for the bodypack on the 3 human models and the free space case at
1890 MHz.
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Figure 29: Radiation patterns for the bodypack on the 3 human models and the free space case at
2380 MHz.

The losses in the body, and hence, reduction in gain, are more profound in the bodypack case, as
the antenna is in much closer proximity to the body giving rise to body losses due to the reactive near
field region of the antenna. Figure [37] shows how as much as 95% of the power can be absorbed at the
lowest frequencies. The amount of power loss will however be a strong function of the exact routing
and proximity of the microphone cable on the body. Loss decreases as the frequency increases, as the
microphone lead plays a less and less important role in extending the counterpoise and the monopole
element distance from the body in terms of wavelengths increases, moving it away from the reactive near
field region. Furthermore, as the frequency increases the region of strong influence decreases in size as
seen in Figures [38] [39] and [40] for the Fats, Duke and Eartha models, respectively. In addition to the
surface SAR, the volumetric SAR in a saggital plane was extracted for the Duke model at frequencies
825 MHz, 3000 MHz, and 4760 MHz, as depicted in Figure The plane has been chosen so that the
effect of the wire in the front of the body and the antenna at the back are seen at the same time. The
penetration depth is higher at low frequencies and thus the power absorption in the body decays as
frequency grows.

Only a subset of the results have been shown here that are sufficient to illustrate the points for
discussion, the complete set of simulation results for all frequencies can be found in Appendix
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XY plane YZ plane XZ plane
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Figure 30: Radiation patterns for the bodypack on the 3 human models and the free space case at
3780 MHz.
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Figure 31: Radiation patterns for the bodypack on the 3 human models and the free space case at
4760 MHz.
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XY plane YZ plane XZ plane
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Figure 32: Radiation patterns for the bodypack on the 3 human models and the free space case at
6000 MHz.

Duke B = Ref.w/w Duke B = Ref.w/w = Duke B = Ref.w/w
= Duke F === Ref.wlow = Duke F === Ref.wlow = Duke F === Ref.wiow

Figure 33: Radiation patterns for the bodypack microphone on front and back of the torso at 235 MHz.
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Figure 34: Radiation patterns for the bodypack microphone on front and back of the torso at 945 MHz.
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= Duke B = Ref.w/w = Duke B = Ref.w/w = Duke B = Ref.w/w
= Duke F = == Ref.wlow = Duke F = == Ref.wlow = Duke F = == Ref.wiow

Figure 35: Radiation patterns for the bodypack microphone on front and back of the torso at 3000 MHz.
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Figure 36: Radiation patterns for the bodypack microphone on front and back of the torso at 6000 MHz.
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Figure 37: Radiated versus loss power (in %) as a function of frequency, for 1 W input power, for the 3
human models with the bodypack set up.
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Figure 38: Surface SAR for Fats with the bodypack microphone (0 dB = 1 W/kg).
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Figure 39: Surface SAR for Duke with the bodypack microphone (0 dB = 1 W/kg).
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Figure 40: Surface SAR for Eartha with the bodypack microphone (0 dB = 1 W/kg).

825 MHz

Figure 41: SAR distribution in a profile view of the the Duke model, showing the absorption in the
frontal part and back part of the body due to the wire radiation and the antenna radiation, respectively,
at 3 different frequencies. In the scale, 0 dB are equivalent to 1 W /kg for 1 W input power.
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3.2.1 Distance Variations

The simulations in this study have been performed for a single position of the device with respect to the
body. However, the reduction in gain with respect to the free space condition is obviously dependent on
the distance of the antenna to the body. In the simulations performed up to this point of the report with
the bodypack microphone, the antenna is centered at the middle width of the bodypack, where it stands
rigidly parallel to the body axis. Thus, the distance between the antenna and the body is fixed by the
bodypack geometry and position. In real life it could well be that the antenna gets closer to the body,
for instance, due to the movement of the person using the microphone system, or for an antenna pivoting
on its base. The variation of parameters such as distance was out of the scope of this project. However,
simulations with the antenna leaning against the body have been run for one model and one frequency
band, to ascertain in which way the antenna performance changes due to the distance variation. The
modified position of bodypack microphone for the Duke model is shown in Figure 42} In this case the
antenna is tilted and closer to the body along its whole length.

The simulations were run for band 2, and the results are depicted for the two extreme frequencies as
well as for the central frequency of the band in Figures [43] to [44]

Figure 42: Duke and bodypack microphone positioned closer to the body with the antenna leaning
towards the surface of the Duke model.

The closer proximity of the antenna to the body translates into higher power loss in the human, and
thus a reduction of the gain in all directions, for all the frequencies in the simulated band (Band 2). The
shadowing effect of the body becomes more evident at the higher frequencies, for instance comparing
Figures and [44] In the zone affected by the body shadowing, the secondary lobes are more evident
when the antenna is tilted towards the body, and the nulls are more pronounced. All in all, the effects of
the presence of the body in the antenna behavior are enhanced when the distance from the antenna to
the body is reduced, as would be expected. The distance body-antenna and conformance of the antenna
to the body may be a topic to have into account in future studies.

3.2.2 Perpendicular Polarization

Having used a short monopole antenna positioned parallel to the body ensures vertically polarized fields
for all the bodypack simulations performed in this study. Perpendicular polarization may ameliorate
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Figure 43: Radiation patterns for the bodypack microphone with the original antenna (blue line) and
the antenna leaning towards Duke’s body (red line) at 945 MHz.
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Figure 44: Radiation patterns for the bodypack microphone with the original antenna (blue line) and
the antenna leaning towards Duke’s body (red line) at 1400 MHz.

the system performance with respect to shadowing, in particular at highest frequencies. For that reason
simulations of a modified bodypack with a perpendicularly polarized antenna have been run for band 4
(4760 MHz and 6000 MHz). The modified antenna is shown in Figure One of the bodypack inner
walls was turned into a PEC ground plane, and the short monopole positioned at the center of this wall,
see the zoomed region in Figure [16]

The radiation patterns obtained for the bodypack microphone with perpendicularly polarized monopole
compared to the vertical polarized one have been extracted from simulations and plotted together for
comparison, as seen in Figures [47] and

There is an amelioration of performance of the antenna with perpendicular polarization, in particular
for the regions shadowed by the body (see for instance plane XY or YZ in Figures 47| and . However,
intrinsically related to the perpendicularly polarized antenna a null appears at 90 azimuth, which reduces
the gain around this direction a minimum of 10dB. A similar behavior is observed at the two frequencies
of Band 4.
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Figure 45: Radiation patterns for the bodypack microphone with the original antenna (blue line) and
the antenna leaning towards Duke’s body (red line) at 1890 MHz.

Figure 46: Duke and bodypack microphone with monopole perpendicular to the body.
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Figure 47: Radiation patterns for the bodypack microphone with perpendicularly polarized antenna
compared to vertically polarized antenna (original model) on the back of Duke model torso at 4760 MHz.
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Figure 48: Radiation patterns for the bodypack microphone with perpendicularly polarized antenna
compared to vertically polarized antenna (original model) on the back of Duke model torso at 6000 MHz.
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4 Discussion

4.1 Handheld Microphones
4.1.1 Comparison to Free Space

To have a global overview on the performance of the handheld microphone in the presence of the human
body, a compilation of the results obtained in section and Appendix [A] has been performed, and has
been merged into a single plot.

Figure represents the gain relative to free space of the monopole antennas mounted in the
handheld microphone as a function of frequency, for all radiation directions, for the Duke model. The
gain relative to free space is computed from the radiation patterns at each frequency for the microphone
model with and without the human model present, with the free space reference being the average gain
of all directions at each frequency. A total of 360 points are plotted per frequency, since the resolution of
the radiation patterns is 1 degree. The directions belonging to the shadowed regions are plotted in gray,
the rest are plotted in red and light blue, as indicated in the schematic of the radiation pattern included
in Figure Analogous plots were produced for the other two models, Eartha and Fats, that can be
found in Figure and

The totality of the points yield negative gain with respect to average gain at free space for frequencies
below 1000 MHz, for the three models, see Figures [49(a)l 49(b)| and 49(c)| implying that the gain of the
antenna is lower when the body is present, as to be expected. At these frequencies shadowing is bounded
by a maximum of 13dB below the average free space reference, consistently for the three models. This
suggests that at lower frequencies the gain in the shadow regions is to a lesser extent governed by the
size of the human model, since the shadowing at lower frequencies is comparable for the three models.
However, for the preferred directions of radiation in azimuth 180° to 360°, plotted in red and blue in
Figures|49(a)} [49(b)|and 49(c)| the deviation from the free space reference is clearly less important for the
Eartha model, specially in the lower half of Band 1. As a conclusion, at lower frequencies the shadowing
is comparable for all body sizes, whereas the gain in the frontal directions diminishes more for the bigger
models.

As the frequency grows the shadowing is increasingly higher, reaching values around 30 dB lower than
the average at free space for Duke and Fats, whereas for the smallest model Eartha the shadowing at
higher frequencies is bounded by -20dB except for the 2 extreme frequencies, where it can reach 26 dB
below the free space reference.

4.1.2 Comparison to 750 MHz

The performance of the antennas with respect to free space has been evaluated previously. However,
it is also of great interest to assess the performance of the antenna at the frequency under study with
respect to the antenna at a frequency in the bands that are currently assigned to wireless microphones,
e.g. 750 MHz. Both study case and reference case are computed in the presence of the body.

Figure p0[shows the gain with respect to the gain at 750 MHz, averaged over all directions, as a function
of frequency, for the three human models. For frequencies lower than the reference, the shadowing is
comparable to the one at the reference frequency. For higher frequencies, the effect of the shadowing
is increasingly higher. The gain deviation from reference starts when the head becomes commensurate
with the wavelength. In this way, the enhanced effect of the shadowing starts at a lower frequency for
Fats, which is the biggest model, and at the highest frequency for Eartha, the smallest model. For the
preferred directions of radiation, the antenna can perform better at higher frequencies, presumably due
to the reflections from the body.

Since the radiation pattern of the monopole antenna in the presence of the body at 750 MHz is similar
to the pattern in free space, just with lower gain, the graphs in Figures [49] and [50] are very similar, just
offset by the gain difference between 750 MHz and free space.
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Figure 49: Handheld microphone: Gain at all frequencies relative to free space average in all radiation
directions on the XY plane. The color code indicates to which angular sector the depicted points belong:

Gray for the shadowed region, red and blue for the rest of XY plane, as indicated in the polar sketch on
the figure.
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Figure 50: Handheld microphone: Gain at all frequencies relative gain at 750 MHz averaged in all radiation
directions on the XY plane. The color code indicates to which angular sector the depicted points belong:

Gray for the shadowed region, red and blue for the rest of XY plane, as indicated in the polar sketch on
the figure.
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4.2 Bodypack Microphones
4.2.1 Comparison to Free Space

Analogously to the handheld microphone case, the totality of the radiation patterns (XY plane) is plotted
in a single graph to get the overall picture of the bodypack microphone behavior in the presence of the
body as a function of frequency. In a first step, the gain is plotted relative to free space. The free space
reference is averaged in all directions for each frequency.

For the bodypack microphone the antenna is much closer to the body than for the handheld microphone,
and this reflects in Figure where the gain with respect to free space reaches -30 dB consistently for the
three models at much lower frequencies than the handheld microphone. The amount of absorbed power
in the body is very sensitive to the distance between microphone and body.

For frequencies lower than 1.7 GHz the gain in all directions is lower in the presence of the body than
in free space. As the frequency increases the effects of the shadowing are more pronounced, and the
gain reaches values bordering -40 dB. As the radiation on regions shadowed by the body worsens with
increasing frequency, some regions with direct radiation benefit of a gain raise due to reflections from the
body.

4.2.2 Comparison to 750 MHz

Figure shows the azimutal XY plane of the radiation patterns of the bodypacked antenna at all
frequency bands compared to the 750 MHz case (with dashed black line in all four plots), for the Duke
model.

The radiation patterns in Figure[52)show a reduction of the gain at frequencies lower than the reference,
suggesting that the body acts more as an absorber, and thus part of the power of the system is absorbed
in the body, rather than radiated. The shadowing is less predominant at these frequencies, but at the
same time the gain in the preferred directions is lower than at the reference frequency.

As the frequency grows the effect is quite the opposite, less power is absorbed in the body and the
radiation patterns reach similar levels as the reference, or even get slightly better due to the body acting
as a reflector more than as an absorber in the preferred radiation directions, but at the same time the
shadowing due to the body is larger.

The antenna performance as a function of frequency can be visualized graphically by plotting the gain
at all frequencies relative to the 750 MHz average, see Figure The gain is referenced to the 750 MHz
gain, averaged over all directions, and plotted as a function of frequency. The regions of the radiation
pattern are identified with different colors: All directions located from 180° to 360° are plotted in gray
(shadowed region), whereas the points at 90° £ 45° azimuth are plotted in red and the rest of the space
are plotted in light blue. There are 360 points plotted per frequency, since the plots are done with 1
degree resolution in the radiation patterns. The plots are shown for Duke, Eartha and Fats.

The dynamic range of the gain with respect to average at 750 MHz at this very same frequency varies
for the three models: Duke ranges from -16dB to 5dB, Eartha from -12dB to 5dB and Fats from -
22dB to 5dB. For higher frequencies, the radiation in favorable directions ameliorates with respect to
the reference frequency in all cases, reaching up to more than 10dB at some frequencies for the 3 models.
As for the shadowed regions, the gain decreases up to -30dB for Fats and Duke at high frequencies, but
stays bounded by -20dB in the case of Eartha.
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5 Conclusions

This project aimed to quantify the degradation in the wireless microphone transmission performances
due to shadowing at higher frequencies as compared to the performances in the UHF band. To reach this
goal, the assessment of the changes of the radiation pattern of wireless microphones (in the presence of a
human body) as the transmission frequency increases was performed. The interaction of the microphone
system with the human body is of course highly dependent on the working frequency, and this fact is very
clearly reflected on the results obtained throughout the study, which was performed for a large frequency
span. At lower frequencies (Band 1 to mid Band 2) the body acts like an absorber: The radiation in
favorable directions is worse than free space due to the power absorbed in the body. For bodypack the
gain is up to 15dB lower in the favorable directions, and for the handheld case 5dB less than free space.
At the same time, the shadowing from the body at low frequencies is less substantial. As the frequency
increases the body acts more like a reflector, there is less power absorbed in the body, and the gain may
even increase with respect to the free space case in the non-shadowed region. In the shadowed region side
lobes and deep nulls appear in the radiation pattern, and this degradation is correlated with the body
size.

For higher frequencies the antennas become better radiators, the radiating power increasing due to the
decrease of the power absorbed in the body. For frequencies higher than 3 GHz the radiated power for the
bodypack is around 70% of the input power, whereas for the handheld microphone 90% of the input power
is radiated. However, it must be taken into account that the ratio of the radiated versus the absorbed
power in the body is very sensitive to the body to microphone spacing. In this sense, the results obtained
for the bodypack microphone show stronger absorption and shadowing than the handheld microphone.
The big influence that the distance microphone — body has on the antenna gain is well reflected on the
results obtained when the antenna of the bodypack system is positioned leaning towards the body such
as to reduce the antenna — body distance to 4 mm. For this smaller distance, the gain decreases by 10dB
with respect to the original distance, for frequencies belonging to Band 2.

The performance of the microphone systems with respect to its own performance at one of the fre-
quencies currently assigned to broadcast (750 MHz in this case) has been assessed. For the handheld the
shadowing increases when the wavelength becomes commensurate with the head size. For the bodypack
microphones the gain in the most favorable directions can increase at high frequencies with respect to
750 MHz due to reflections in the body, while shadowing becomes more pronounced.

As a general conclusion, all the scenarios have shown shadowing increases as the frequency increases.
In non-shadowed regions, however, the gain is not necessarily lower than reference; on the contrary, gain
increase with respect to reference has been observed, due to the reflections coming from the body, that
is acting more as a reflector rather than an absorber at higher frequencies.

Further work is needed to complete the transmission equation for the selected scenarios. However, it
can be said that, all other things being equal, the path loss will increase by 20 dB with a 10 fold increase
in frequency.
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