

I-AT-TC · Poststrasse 6 · 3072 Ostermundigen

Bundesamt für Kommunikation Sektion Netze und Dienste Zukunftsstrasse 44 2501 Biel/Bienne

Per E-Mail an: tp-nd@bakom.admin

Ostermundigen, 27. Juli 2017

Öffentliche Konsultation zur Ausschreibung und Vergabe von neuen Mobilfunkfrequenzen in der Schweiz

Sehr geehrte Damen und Herren

Besten Dank für die Möglichkeit, zur Ausschreibung und Vergabe von neuen Mobilfunkfrequenzen in der Schweiz Stellung nehmen zu dürfen. Die SBB hat aus mehreren Gründen Interesse daran, sich hierzu einzubringen:

- Sie ist Betreiberin und Systemführerin eines eigenen GSM-R Netzes und des künftigen Future Railway Communication Systems (FRMCS).
- Sie agiert als Verteilerin von Mobilfunksignalen der öffentlichen Betreiber in Tunneln, den SBB Zügen und in Bahnhöfen.
- Sie ist ausgeprägte Mitnutzerin der öffentlichen Mobilfunkdienstleistungen für die Unterstützung der eigenen Betriebsprozesse.

Gerne nehmen wir zu Ihren Fragen detailliert Stellung. Sie finden den Fragebogen mit unseren Antworten im Anhang.

Wir danken Ihnen für die Kenntnisnahme und Berücksichtigung unserer Anliegen. Für Fragen steht Ihnen Pascal von Allmen (pascal.vonallmen@sbb.ch) gerne zur Verfügung.

Freundliche Grüsse

Manuel Dietrich Leiter Technik Telecom Pascal von Allmen Leiter Technik Bahnkommunikation

P. ca Allun

Anlagen:

Fragebogen

Anhang:

Fragebogen

4.1 Angaben zur eingebenden Partei

Firmenname SBB AG

Ansprechpartner Pascal von Allmen Strasse Poststrasse 6

PLZ, Ort 3072 Ostermundigen Tel.: +41 79 367 08 28

Fax: n/a

E-Mail: pascal.vonallmen@sbb.ch

	Betreiber eines landesweiten öffentlichen Mobilfunknetzes der Schweiz
	Betreiber eines regionalen Netzes in der Schweiz
X	Betreiber eines drahtlosen privaten Netzes in der Schweiz
	Netzbetreiber eines landesweiten leitungsgebundenen Netzes in der Schweiz
	Betreiber eines Mobilfunknetzes im Ausland
	Telekommunikationsnetzausrüster
	Telekommunikationsdienste-Anbieter (Service-Provider)
	Anbieter von Inhalten (Content-Provider)
	Konsumentenorganisation
	Interessenverband
	Behörde
	Beratungsunternehmen
	Andere, welche?

Bitte kennzeichnen Sie nachfolgend alle Aussagen, bei denen Sie ein schutzwürdiges Geheimhaltungsinteresse geltend machen.

4.2 Allgemeine Fragen

1. Wie schätzen Sie die (u. a. zeitliche) Entwicklung der Mobilfunktechnologie (LTE-Evolution, 5G usw.) ein?

Die zeitliche Entwicklung von 4G und 5G Technologie wird hauptsächlich durch die Industrie und die öffentlichen Anbieter bestimmt. Die SBB begrüsst im Sinne ihrer Digitalisierungsstrategie eine rasche Verbreitung von Mobilfunkservices entlang der Bahntrassen und der Bahnhöfe. Unsere Kundinnen und Kunden erwarten breitbandige unterbruchfreie Internetverbindungen im Zug, im Bahnhof und in den RailCities.

SBB Personenverkehr hat ihre Züge für die nationalen Verbindungen nicht mit WLAN ausgerüstet und verfolgt eine Strategie des Angebots durch die öffentlichen Netzbetreiber. Im Interesse unserer Kundinnen und Kunden sind wir bestrebt, eine optimale Sprach- und Datenversorgung entlang der Reisekette zu

unterstützen. Entsprechend unterstützt die SBB die öffentlichen Netzbetreiber beim Einbau von Signalverstärkern in Zügen, Tunneln und an Bahnhöfen. Zudem wird damit der Zugang zu unseren Bahninfrastrukturen erleichtert (z.B. Versorgungskorridore). Oft suchen unsere Kundinnen und Kunden die Verantwortung für mangelnde Bandbreite oder schlechte Versorgung im und zum Zug bei der SBB.

Ab 2018 geht die SBB davon aus, dass sich in den bestehenden Frequenzbändern LTE-Advanced durchsetzen wird. Ab 2020 rechnet die SBB mit der 5. Generation Mobilfunk. Nach Ansicht der SBB hängt die schnelle Ausbreitung von 5G von den Vorteilen der verwendeten Technologien ab.

2. Wie schätzen Sie deren Auswirkungen auf Anwendungen, Dienste, Endgeräte, Konvergenz Festnetz / Mobilfunk (FMC) usw. ein?

Die SBB nutzt heute für nicht sicherheitsrelevante Betriebsprozesse zusätzliche Trägerdienste der öffentlichen Betreiber z.B. unter Zuhilfenahme der LTE Technologie. Diese Inanspruchnahme resultiert aus der geringen Nutzerbandbreite von GSM-R und der fehlenden Bereitstellung von Smartphones für GSM-R. Zudem ist das momentan verfügbare Frequenzspektrum für GSM-R eher klein, um Breitbandträgerdienste zu realisieren. Zudem ist das Frequenzspektrum für GSM-R nicht Technologie-neutral.

Grundsätzlich verfügt jeder SBB Mitarbeitende über ein Smartphone, welches das fixe Telefon ersetzt und Internet/Intranet-Zugang bietet. Zahlreiche Apps setzt die SBB im täglichen Betrieb ein. Die FMC Strategie der SBB zielt auf die Vernetzung von Arbeitsplatz mit PCs und Smartphones/Tablets und unterstützt einen "Work Anywhere" Ansatz. Dabei werden die Endgeräte (Smartphones, Modems) der Technologie- und Marktentwicklung alle drei Jahre angepasst. Eine rasche schienennetzweite Verbreitung von Breitbandversorgung, z.B. LTE, ist erstrebenswert.

Zudem ist es für die SBB ein gesellschaftliches Anliegen, Breitbandträgerdienste der öffentlichen Betreiber in Tunneln der SBB zur Verfügung zu stellen. Die LTE Technologie stellt dabei hohe Anforderungen an die Verstärker- und Abstrahlsysteme (Delay etc).

Neue Frequenzbänder >3GHz für die Nutzung der LTE Technologie sind eine Herausforderung für die verwendeten Signalverstärker und Abstrahlsysteme in den Zügen und den Tunneln. Bei Letzterem verwendet die SBB vor allem Strahlkabel, die ab einer Frequenz von 2.6 GHz ineffizient werden. Die Verwendung des 700 MHz Frequenzbandes ergibt Vorteile für den Effizienzansatz der heute bereits verwendeten Strahlkabel.

Das bahneigene Betriebsfunknetz GSM-R und das Nachfolgesystem FRMCS sind die Grundlagen für hochverfügbare Services. FRMCS wird neben einem eigenen Funknetz auch die Nutzung von öffentlichen Netzen unterstützen. Welche Anwendungen die SBB auch künftig über ein eigenes Netz nutzen wird und welche allenfalls durch öffentliche Netze genutzt werden, ist zum heutigen Zeitpunkt noch nicht abschliessend geklärt. Das den Bahnen zur Verfügung stehende Frequenzspektrum ist eine wichtige Entscheidungsgrundlage hierfür.

3. Wie schätzen Sie die langfristige Marktentwicklung bzgl. Teilnehmer / Volumen / Anwendungen (wie z.B. Internet of Things) ein?

Die SBB studiert momentan den Einsatz von "Internet of Things" für betriebliche Zwecke auf Basis eines Low Power Networks im unlizenzierten ISM Frequenzband 868 MHz. Denkbar wäre künftig auch die

Verwendung des LTE-basierten NarrowBand IoT. Zum Beispiel für die Güterverfolgung, die betriebseigene Überwachung von Infrastrukturen entlang der Bahntrassen oder für Prozessoptimierungen. Mögliche Kooperationen mit öffentlichen IoT-Anbietern, der Eigenbetrieb oder eine Mischung aus beiden Ansätzen können zu Anwendung kommen. Die SBB teilt die allgemeine Meinung, dass die Anzahl der IoT-Geräte massives Wachstumspotential hat.

Die Datenvolumen über die verfügbaren Mobilfunktechnologien werden weiterhin stark steigen. Sowohl im Uplink wie im Downlink. Zudem wird die Off-Net Kommunikation (train-to-train / car-to-car etc) und Anzahl ad-hoc Netzwerke zunehmen.

Der Einsatz von Frequenzspektrum muss daher sehr gut geplant sein, damit sich die Systeme nicht gegenseitig stören und die Kapazität möglichst effizient ausgeschöpft werden kann. Harmonisierungen der Zuteilung von Spektrum auf internationaler Ebene sind darum zu bevorzugen, da insbesondere an Grenzübergängen die Interferenzsituationen besser kontrolliert und vermieden werden können.

4. Wie beurteilen Sie die Auswirkungen der geltenden Grenzwerte der NISV auf den Ausbau der Mobilfunknetze und die Nutzung der neu verfügbaren Frequenzen?

Ein kritischer Faktor ist die Leistungsbilanz der Sendestandorte. Hier ist eine Lockerung und Flexibilisierung notwendig, um die momentan gültigen und mindestens teilweise die neuen Frequenzbänder auf den gemeinsam genutzten Sendestandorten nutzen zu können. Die Einhaltung der NISV ist ein Kostentreiber im Aufbau und Betrieb von mobilen Netzwerken.

4.3 Fragen zu den Konzessionen und den Auflagen

5. Wie lange soll die Konzession gültig sein? (bitte Begründung angeben)

Die SBB geht in der Regel eher langfristige Bindungen mit den öffentlichen Betreibern ein (z.B. Roaming-Abkommen oder Kooperationen für die Versorgung im Tunnel). Aufgrund der Lifecycle-Kosten ihrer Telecom-Infrastruktur begrüsst die SBB daher die Vergabe von Konzessionen mit einem Zeithorizont von ca. 15 Jahren.

6. Welche Auflagen (pro Frequenzband) sollten in den Konzessionen gemacht werden (z.B. Versorgungsauflagen, drahtlose Kameras, terrestrische Rundfunk-Verbreitung)? Oder sind keine notwendig?

Für den Bahnbetrieb unter Verwendung von GSM-R und später FRMCS ist es essentiell, über ungestörte Verbindungen für die Bahnkommunikation zu verfügen. Daher sollen Konzessionen an die öffentlichen Netzbetreiber wie bis anhin geeignete Nutzungseinschränkungen bezüglich maximaler Ausserband-Aussendungen und Koordinationspflicht zum Schutz von GSM-R/FRMCS enthalten. Entsprechende Massnahmen zur Vermeidung von Störungen durch die öffentlichen Netzbetreiber in Bezug auf GSM-R/FRMCS sind durch diese zu erbringen.

Die SBB erachtet Auflagen als sinnvoll, wenn damit erreicht wird, dass ungenutztes Spektrum weitervergeben werden kann. Eine Technologie-neutrale Vergabe ist zu bevorzugen, damit die Netzbetreiber keine Einschränkungen in Bezug auf den Einsatz von innovativen Technologien haben.

7. Sollten Frequenzressourcen für regionale Netze reserviert werden? Wenn ja, wie viele, in welchem Frequenzband und für welche Anwendung?

Eine Partitionierung der Frequenzressourcen in regionale Nutzung sieht die SBB in unserem kleinen Land eher nicht. Sollte dennoch eine Partitionierung oder ein geografisches Spektrum-Sharing erfolgen, so ist diese Zusammenarbeit klar zu definieren.

4.4 Fragen zum Vergabeverfahren

8. Halten Sie den Zeitpunkt des Vergabeverfahrens - voraussichtlich Ende 2018 - für geeignet?

Generell ist dies zu bejahen, da der Implementierungshorizont für neue Frequenzbänder bei ≥5 Jahre liegt.

Zudem ist der Verzögerung durch Einsprachen beim Bau von neuen Anlagen oder dem Tausch von Antennen Rechnung zu tragen. Zu beachten ist aber auch, dass 5G NR wahrscheinlich 2018 noch nicht in den zu unterstützenden Frequenzbändern international fertig spezifiziert ist.

9. Sehen Sie die Frequenzen in den verschiedenen Bändern als potenzielle Substitute und/oder Komplemente?

700 MHz:

Wird als gutes Komplement oder Substitut zu 800/900 MHz angesehen. Dabei ist der Anspruch der Public Safety Organisationen zu beachten. Die Transportpolizei und die Lösch- und Rettungsdienste der Bahnen sind auf sichere, mit den Public Safety Diensten koordinierte Breitbandnetze für den öffentlichen Einsatz oder im Not- und Krisenfall angewiesen.

1400 MHz:

Aufgrund SDL wohl als Komplement mit FDD Bändern bei Downlink-Asymmetrie in den Netzen der öffentlichen Betreiber geeignet.

3400-3800 MHz:

Wird aufgrund der Bandbreite als attraktives komplementäres Frequenzband für Verkehr-Kapazitätsausbauten angesehen und ist auch noch bedingt für Hochgeschwindigkeitsumgebungen geeignet. Das Frequenzband ist jedoch nicht mehr geeignet für den Einsatz mit den heute verwendeten Strahlkabel z.B. bei Tunnelversorgungen.

10. Mit welcher Art des Vergabeverfahrens (Auktion, Kriterienwettbewerb, direkte Zuteilung) sollten die Frequenzbänder vergeben werden? Sollten alle Frequenzbänder mit derselben Art des Verfahrens vergeben werden?

Siehe Antwort zur Frage 6.

11. Soll die maximal erwerbbare Frequenzbandbreite pro Auktionsteilnehmer begrenzt werden? Wenn ja, weshalb und auf wie viel?

Keine Antwort.

4.5 Fragen zu den Frequenzen

700 MHz

12. Wie beurteilen Sie die Attraktivität dieses Frequenzbandes? (bitte Begründung angeben)

Sehr attraktives Band hinsichtlich technischer und ökonomischer Aspekte für die Ergänzung der Breitbandversorgung entlang von Bahntrassen und in Tunneln. Die bestehenden Abstrahleinrichtungen in Tunneln unter Verwendung von Strahlkabel können wiederverwendet werden, was auch für einen Polycom-Ersatz der Public Safety Organisationen in diesem Frequenzbereich zutreffen würde.

13. Wie beurteilen Sie die Attraktivität der SDL-Blöcke in diesem Frequenzband? Sollten diese Blöcke ebenfalls vergeben werden? (bitte Begründung angeben)

Keine Antwort.

- **14.** Welche Aspekte sollten bei der Vergabe dieses Frequenzbandes beachtet werden? Siehe Antworten zu den Fragen 6 und 9.
- 15. Wie gross ist Ihr Interesse an Bandbreite in diesem Frequenzband? Gibt es aus Ihrer Sicht einen Mindestbedarf unterhalb dessen die Nutzung u. U. ineffizient wäre? Wenn ja, wie gross ist dieser Frequenzumfang?

Die Bahnen in Europa konnten sich bisher nicht auf eine gemeinsame Nutzung des 700MHz Bereiches einigen. Aufgrund der guten technischen und ökonomischen Aspekte würde sich dieser Frequenzbereich für ein allfälliges Network-Sharing eignen. Die entsprechenden regulatorischen Rahmenbedingungen müssten noch geschaffen werden.

1400 MHz

16. Wie beurteilen Sie die Attraktivität dieses Frequenzbandes? Sollten diese Blöcke ebenfalls vergeben werden? (bitte Begründung angeben)

Für den Einsatz innerhalb von Tunneln und für In-Train Versorgung gut geeignet, da die vorhandenen Strahlkabeleinrichtungen weiterverwendet werden können.

- 17. Welche Aspekte sollten bei der Vergabe dieses Frequenzbandes beachtet werden? Siehe Antwort zur Frage 6.
- 18. Wie gross ist Ihr Interesse an Bandbreite in diesem Frequenzband? Gibt es aus Ihrer Sicht einen Mindestbedarf unterhalb dessen die Nutzung u. U. ineffizient wäre? Wenn ja, wie gross ist dieser Frequenzumfang?

Keine Antwort.

3400-3800 MHz

19. Wie beurteilen Sie die Attraktivität dieses Frequenzbandes? Sollten diese Blöcke ebenfalls vergeben werden? (bitte Begründung angeben)

Wird aufgrund der Bandbreite als attraktives Frequenzband für Verkehr-Kapazitätsausbauten angesehen und ist auch noch bedingt für Hochgeschwindigkeitsumgebungen geeignet.

20. Bevorzugen Sie im Bereich 3400-3600 MHz die Nutzung mit TDD oder FDD?

Das Verhalten von TDD ist bei hohen Geschwindigkeiten noch nicht abschliessend bekannt. Daher sieht die SBB eine tendenzielle Bevorzugung von FDD.

- 21. Welche Aspekte sollten bei der Vergabe dieses Frequenzbandes beachtet werden? Siehe Antwort zur Frage 6.
- 22. Wie gross ist Ihr Interesse an Bandbreite in diesem Frequenzband? Gibt es aus Ihrer Sicht einen Mindestbedarf unterhalb dessen die Nutzung u. U. ineffizient wäre? Wenn ja, wie gross ist dieser Frequenzumfang?

Keine Antwort.

4.6 Weitere Kommentare

Die SBB resp. die Normalspurbahnen mit Netzzugang (wie BLS und SOB) streben eine weitgehende Digitalisierung ihrer Betriebsprozesse im Rahmen des Branchenprogramms "Smart Rail 4.0" an, um die Netzkapazitäten zu erhöhen und die Systemkosten zu senken. Eine hoch verfügbare breitbandige Connectivity ist eine Grundvoraussetzung, um diese Digitalisierung zu ermöglichen. Die Bahnen werden sich hierzu sowohl auf die eigenen Mobilkommunikationssysteme (GSM-R und in Zukunft FRMCS) abstützen, deren Bedeutung weiter zunimmt, als auch noch mehr Kapazitäten der öffentlichen Mobilfunkan-

bieter nutzen als bis anhin, namentlich um breitbandige Dienste, die zunehmend auch für betriebliche Prozesse wesentlich werden, nutzen zu können. Zudem soll auch die Fahrgastkommunikation, die ab 2013 durch den schnellen 4G Rollout in bestehenden Frequenzbändern in kurzer Zeit massiv verbessert werden konnte, weiter ausgebaut werden können. Insofern sind die Bahnen an einer sehr guten landesweiten Mobilfunkversorgung mit den neusten Technologien stark interessiert.

Daher wird sich die SBB vor allem für die Erhaltung ihres zugeteilten 7 MHz-Spektrums im 900 MHz Frequenzband einsetzen, unterstützt aber auch eine flexiblere Nutzung der IMT-Frequenzbänder.

Zudem begrüsst die SBB die aktuellen Bestrebungen, für die Bahnen in Europa zusätzliches harmonisiertes Spektrum zu definieren.